Hematology
The B Lymphocytes are ever ready for war! (Part 2)
Human immunity is a complex intricate battalion involving a
plethora of different cells cooperating to ensure the health of an individual.
Because of the diversity of immune cells, flow cytometry represents the best
method for studying functional and phenotypic properties of these cell subsets,
especially with the ever-expanding list of Cluster of Differentiation (CD) markers.
plethora of different cells cooperating to ensure the health of an individual.
Because of the diversity of immune cells, flow cytometry represents the best
method for studying functional and phenotypic properties of these cell subsets,
especially with the ever-expanding list of Cluster of Differentiation (CD) markers.
The immune system comprises of two distinct arms that are
inextricably linked; innate and adaptive immunity. The primary role of the innate
immune system is to provide a first line of defence by limiting the
colonization of invading pathogens until antigen-specific adaptive immune
responses are established.
inextricably linked; innate and adaptive immunity. The primary role of the innate
immune system is to provide a first line of defence by limiting the
colonization of invading pathogens until antigen-specific adaptive immune
responses are established.
Since we have previously discussed about the Cell-mediated adaptive
T cell immunity (https://www.linkedin.com/post/edit/6479961887206412288), this
article will mainly be discussing only on the adaptive humoral immunity B
cell and how flow cytometry plays a role. The hallmark of the
adaptive humoral immunity is the secretion of powerful multi-functional
antibodies that can eradicate bacteria either by neutralisation or promoting
opsonisation (phagocytosis/lysis).
T cell immunity (https://www.linkedin.com/post/edit/6479961887206412288), this
article will mainly be discussing only on the adaptive humoral immunity B
cell and how flow cytometry plays a role. The hallmark of the
adaptive humoral immunity is the secretion of powerful multi-functional
antibodies that can eradicate bacteria either by neutralisation or promoting
opsonisation (phagocytosis/lysis).
The positive selection process of the B lymphoid progenitors occur
in the bone marrow where the cells’ surface B Cell Receptor (CD19) is
tested for its functionality to complete their maturation as naive B Lymphocytes.
in the bone marrow where the cells’ surface B Cell Receptor (CD19) is
tested for its functionality to complete their maturation as naive B Lymphocytes.
The activation and subsequent maturation of the Naïve B cells is a
collaborative effort with the CD3+CD4+ T helper cells. After leaving the bone
marrow and upon encountering a deleterious antigen, the Naïve B cell will
capture that antigen and present it to a T helper cell via the MHC Class II
receptor. This collaboration will elicit an “activation” of the B cell to start
differentiating into 2 groups of cells, Plasma B cell or Memory B cell.
The CD138+CD38+ Plasma B cell will
start producing antibodies specifically targeting and eliminating the earlier
mentioned harmful pathogen. These Plasma B cells are permanently situated at
lymphoid organs such as bone marrow, spleen and lymph nodes to produce
antibodies to be released into the blood stream.
start producing antibodies specifically targeting and eliminating the earlier
mentioned harmful pathogen. These Plasma B cells are permanently situated at
lymphoid organs such as bone marrow, spleen and lymph nodes to produce
antibodies to be released into the blood stream.